Coarse index theory and quantum physics
Guo Chuan Thiang ̹  (Peking University)
10:00-11:00, August 22-24 & 14:00-15:00, August 22-23, 2023   Science Building A503
Abstract:
I will present coarse geometry ideas, specifically index theory and cohomology, from the viewpoint of modern mathematical physics.\\
Prerequisites: Basic concepts in functional analysis, differential geometry, algebraic topology, and quantum mechanics.\\
Topics(tentative):
Lecture 1: Fredholm index in Quantum mechanics\\
Lecture 2: Operator algebras for coarse geometry\\
Lecture 3: Coarse index of Dirac operators coupled to gauge fields\\
Lecture 4: Partitions, coarse and cyclic cohomology, and trace pairings\\
Lecture 5: Application to large-scale quantization and quantum Hall effect.\\
References:
I aim to explain the background to
//faculty.bicmr.pku.edu.cn/~guochuanthiang/conductancequantization.pdf (//arxiv.org/abs/2308.02819)\\
Other references:
1. Roe, J.: Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Am. Math. Soc. 104(497) 1993\\
2. B. Blackadar. K-theory for operator algebras, vol.5 of Math. Sci. Res. Inst. Publ. Cambridge Univ. Press, Cambridge, 1998\\
3. J. Bellissard, A. van Elst, and H. Schulz-Baldes. The noncommutative geometry of the quantum hall effect. J. Math. Phys., 35(10):5373-5451, 1994\\
4. G.C. Thiang, Topics in Mathematical Physics lecture notes, faculty.bicmr.pku.edu.cn/~guochuanthiang/MP/MPTopicsNotes.pdf
About the speaker:
̹(Guo Chuan Thiang)¼¹ѧѧʿѧλŴѧ˶ʿѧλţѧѧʿѧλ2015-2017ڰĴǰ´ѧʿ2017-2020ĴDECRA2022ѡҼ˲Ŀ̹оѧоȤʵ(topological phases of matter)ۺ۵еK-ۣˣǽΣָۺӴComm. Math. Phys.ѧڿн30ƪġ
Attachments: