色播

当前位置: 色播 > 学术报告
学术报告 - 偏微分方程方向
The existence of Prandtl-Batchelor flows
林治武 教授(复旦大学)
11月28日14:00  闵行校区数学楼401

主持人:何小清 教授

报告内容介绍:
The existence of steady solutions of Navier-Stokes equations had been proved by Leray in 1930s. However, the inviscid limit of these steady solutions is still poorly understood. In particular, there is no general selection criteria to pick steady Euler flows as the inviscid limit. For steady two-dimensional incompressible flows with a single eddy (i.e., nested and closed streamlines), Prandtl (1905) and Batchelor (1956) proposed that in the limit of vanishing viscosity, the vorticity is constant in an inner region separated from the boundary layer. With Chen Gao, Mingwen Fei and Tao Tao, we give the first proof of the existence of Prandtl-Batchelor flows on a disk with the wall velocity slightly different from the rigid-rotation. For an annulus with wall velocities slightly different from the rigid-rotation and general forcing, we constructed generalized Prandtl-Batchelor flows with the leading Euler flow being the rotating shear flow uniquely determined by the tangential component of forcing. More recently, with Zhi Chen, Mingwen Fei and Jianfeng Zhao, we constructed Prandtl-Batchelor flows on a disk with a point vortex background.

主讲人介绍:
林治武,复旦大学教授、博导。本科毕业于北京大学,硕士毕业于日本东京大学,博士毕业于布朗大学,并在著名的应用数学研究中心美国纽约大学柯朗应用数学研究所做博士后研究,回国前曾任美国乔治亚理工学院数学系终身教授。主要从事偏微分方程,动力系统及其应用领域的研究工作,在解的稳定性、长时间行为等方面作出一系列原创性的工作,研究成果发表在Invent Math、Memoirs of AMS、CPAM、ARMA、CMP等国际期刊上。担任SIAM. J. Math. Anal. 等杂志的编委。